CHEMISTRY OF PENTABORANE(9). A REVIEW

Herbert BEALL*a,** and Donald F. GAINES*^b*

^a Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.; e-mail: hbeall@wpi.edu

^b Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, U.S.A.; e-mail: gaines@chem.wisc.edu

> Received March 3, 1999 Accepted March 18, 1999

Dedicated to Dr Stanislav Heřmánek on the occasion of his 70th birthday.

The chemistry of pentaborane(9) (B_5H_9) is reviewed on work reported since 1981. All aspects of its synthesis, reactivity, NMR spectroscopy as well as most its important derivatives including metallaboranes and linked B_5 cages are presented and discussed. A review with 60 references.

Key words: Boranes; Pentaboranes; Metallaboranes; Boron clusters; NMR spectroscopy.

1. INTRODUCTION

Pentaborane(9) was reported in 1923 by Stock and Kuss¹, and its structure was determined by Dulmage and Lipscomb² twenty-nine years later. It is the most stable boron hydride with fewer than ten boron atoms, and, as such, has been the subject of extensive research including an extraordinarily large investigation into its potential as a high energy jet fuel³. However, it is not an easy compound to handle being toxic and pyrophoric.

Pentaborane(9) (Fig. 1) has a square-pyramidal boron skeleton and its symmetry is C_{4v} . The molecule has boron atoms in two environments, one apical boron atom, B1, and four equivalent basal boron atoms, B2–B5. Each boron atom bears a terminal hydrogen atom, and so there are two environments for terminal hydrogens. In addition are the four equivalent bridging hydrogen atoms, which connect basal boron atoms by three-center, two-electron, B–H–B bonds.

Previous reviews on the chemistry of pentaborane(9) have appeared in 1973 (ref.⁴) and 1981 (ref.⁵). The structures and ¹¹B NMR spectra of ions derived from B_5H_9 and some rearrangements of bridge substituted B_5H_9 have been reviewed very recently 6 . The use of isotopic labeling to explore intramolecular rearrangements in B_5H_9 has been explored⁷ and reviewed^{8,9}. Boron hydride reactions involving metals received extensive description in 1982 (ref.¹⁰). This paper will concentrate on work not covered in these reviews.

2. 11B NMR

Nuclear magnetic resonance (NMR), particularly ¹¹B NMR, shares with X-ray crystallography the position of one of the two paramount techniques for structure determination of boron compounds including pentaborane(9)

FIG. 1

The structure and numbering system of pentaborane(9), $B₅H₀$. Reprinted with permission from Fig. 1 of Gaines D. F.: *Acc. Chem. Res*. **1973**, *6*, 416. Copyright 1973 American Chemical Society.

derivatives. Much has been written about this technique including quadrupolar relaxation and fluxional behavior. We will consider two relatively recently reported aspects.

2.1. Two-Dimensional 11B-11B NMR

The most successful rapid analysis tool for structure determination of boranes and their derivatives has historically been 11 B NMR spectroscopy. The more recent application of two-dimensional ¹¹B-¹¹B NMR, correlated spectroscopy (COSY), allows unequivocal assignments for many one-dimensional 11B NMR spectra by detecting spin-spin coupling among ¹¹B nuclei and thus the connectivity of these nuclei. Studies have been reported on a number of pentaborane (9) derivatives¹¹.

The methyl derivative of pentaborane(9) with the methyl group substituted for a hydrogen atom on B2, 2 -MeB₅H₈, shows coupling between all basal boron atoms and the apical boron. This is not unexpected since these pairs of boron atoms, which are separated by a distance of 1.69 Å in B_5H_9 , are bonded directly to each other. However, coupling is also observed between the pairs of basal boron atoms, which are at a distance of 1.80 Å and presumably connected only by the B–H–B, three-center, bridge bond. Similar results are reported for $(\mu$ -Me₂NCH₂)B₅H₈ (Fig. 2), a bridge-substituted derivative, except that coupling does not occur between B2 and B3, which are separated more than in the unsubstituted borane and bridged by the N–C moiety. In another bridge-substituted derivative, $(\mu$ -Me₃CCH=N)B₅H₈ (Fig. 3), the COSY spectrum shows again that coupling does not occur between the borons that are bridged by the substituent group. Furthermore, it

> H H H(7) $H(S)$ H H Me Me $\sqrt{ }$ N H B(2) H(6) B(1) $B(4)$ B(3) B(5)

FIG. 2

Structure of the two-atom bridged pentaborane(9) derivative, $(\mu$ -Me₂NCH₂)B₅H₈. Reprinted with permission from Fig. 2 of Gaines D. F., Coons D. E.: *Inorg. Chem*. **1986**, *25*, 364. Copyright 1986 American Chemical Society.

shows that B4 and B5 are magnetically nonequivalent, a result that is not discernible from the one-dimensional spectra. Two pentaborane(9) derivatives that do not show coupling between basal boron atoms are $(CO)_{3}MnB_{5}H_{8}$ and $(CO)_{3}ReB_{5}H_{8}$. These MB_{5} pentagonal pyramidal molecules are quite rigid on the NMR time scale, and the lack of observable boron atom coupling interactions illustrates our relatively primitive understanding of coupling transmission phenomena between atoms that are linked by bridging hydrogen atoms. Semiempirical theoretical techniques have been employed to understand the factors governing coupling between boron nuclei in pentaborane (9) derivatives¹².

2.2. Shift Reagents

The effects of paramagnetic Sm(II) on the ¹¹B NMR spectra of $B_5H_8^-$ and B_5H_9 have been found to be quite different¹³. Reaction of $SmI_2(THF)$ _x with two equivalents of $\mathtt{B_5H_8^-}$ in tetrahydrofuran solution results in a green solution but no isolatable Sm-borane derivative. The ^{11}B resonances were shifted substantially upfield, but the FTIR spectrum of $\mathrm{B_5H_8^-}$ was essentially unchanged. Thus it appears that the effect was magnetic and not structural. The extent of upfield shift was found to be directly proportional to the $SmI₂(THF)_v$ concentration. However, reaction of neutral $B₅H₀$ with $\text{SmI}_{2}(\text{THF})$ _x in THF produced only a small shift in the ¹¹B resonances and that was *downfield*. Clearly, the interaction of the Sm(II) and the $B_5H_8^-$ is much stronger than that with B_5H_9 . This result also shows that the B_5H_9 is not deprotonated to $B_5H_8^-$ by the I[–] ion in $SmI_2(THF)_{x}$.

FIG. 3

Proposed structure of $(\mu$ -Me₃CCH=N)B₅H₈. Reprinted with permission from Fig. 6 of Gaines D. F., Edverson G. M., Hill T. G., Adams B. R.: *Inorg. Chem*. **1987**, *26*, 1813. Copyright 1987 American Chemical Society.

3. PREPARATION OF PENTABORANE(9)

Pentaborane(9) has been prepared by catalytic pyrolysis of B_2H_6 (ref.¹⁴). Large stocks of the compound left over from the jet fuels program have precluded the need for continued synthesis of the compound for use as a reagent. Study of other preparative methods has been primarily aimed at elucidating the mechanisms of pentaborane formation and reaction.

One such reaction that produces pentaborane(9) is the slow decomposition of B_4H_{10} in diethyl ether,

5 B₄H₁₀
$$
\longrightarrow
$$
 2 B₅H₉ + 5 B₂H₆ + H₂

which was postulated to proceed by way of a Lewis base adduct intermediate 15 ,

$$
B_4H_{10} + (C_2H_5)_2O \longrightarrow B_3H_7 \cdot O(C_2H_5)_2
$$
.

The existence of a Lewis base adduct as an intermediate in the decomposition of B_4H_{10} in ether gets credence from a preparation of pentaborane(9) employing the reaction of tetraborane(10) with dimethyl sulfide in a two step process¹⁶. The first step is the symmetrical cleavage of B_4H_{10} ,

$$
B_4H_{10} + 2 (Me)_2S \longrightarrow B_3H_7 \cdot S(Me)_2 + BH_3 \cdot S(Me)_2
$$
.

The two products were then separated and additional dimethyl sulfide was reacted with the $B_3H_7 \cdot S(Me)_2$,

$$
3 B_3H_7 \cdot S(Me)_2 + (Me)_2S \longrightarrow B_5H_9 + 4 BH_3 \cdot S(Me)_2 .
$$

The isolation of the intermediate and the faster production of B_5H_9 using dimethyl sulfide rather than ether is postulated to be related to the stronger basicity of the sulfide. The authors do point out, however, that the reactions are not strictly mechanistically analogous since one produces $H₂$ gas and the other produces the Lewis base adduct of borane. However, it is possible that the H_2 is the product of a side-reaction and that these two preparations of B_5H_9 proceed by similar paths.

Pentaborane(9) has been recovered from its halogenated derivatives through reduction with tributyltin hydride¹⁷.

1-
$$
ClB_5H_8
$$
 or 2- ClB_5H_8 $\xrightarrow{Bu_3SnH}$ B_5H_9

4. STABILIZATION OF PENTABORANE(9)

Pentaborane(9) is extremely useful in the preparation of a large number of other boron cluster compounds including a number of carboranes. The unpredictable reactivity of pentaborane(9) with oxygen, however, has often been a deterrent in exploring the full extent of its reaction chemistry. It has been determined that pentaborane(9) dissolved in tetrahydrofuran is greatly stabilized with respect to oxidation while maintaining much of its synthetic utility¹⁸. Solutions of B_5H_9 in THF stored under an inert atmosphere have been found to be completely unchanged for periods of months. When exposed to a static air environment, a 0.1 M solution of B_5H_9 was found still to contain 59% of the original compound after one month.

Reactions of these THF-stabilized solutions of B_5H_9 with substituted acetylenes have been shown to produce the alkyl- and arylcarboranes, $nido-2,3-(CH_3CH_2)_2C_2B_4H_6$, $nido-2,3-(C_6H_5)HC_2B_4H_6$ and the difficult to prepare, sterically crowded *nido-2*,3- $(C_6H_5)_2C_2B_4H_6$. Investigation of the THF solutions of B_5H_9 by ¹¹B NMR indicated that, as expected, cleavage of the molecule such as is observed in B_2H_6 and B_4H_{10} does not occur. A very weak, short-lived complex in which a B–H–B is broken and the THF is bonded to basal boron atom seems likely. This is in agreement with earlier ¹¹B investigations of B_5H_9 derivatives showing that the exchange,

 μ -DB₅H₈ \longrightarrow 2-DB₅H₈

occurs in the presence of ethers but not in their absence¹⁹.

5. HYDROGEN ISOTOPE EXCHANGE

The first regiospecific deuteration of B_5H_9 was accomplished using DCl in the presence of $AlCl₃$ to produce 1-DB₅H₈. The deuterium source may also be perdeutero benzene or another aromatic compound having a perdeuterated ring²⁰. In the presence of $AICI₃$ catalyst, exchange occurs at the apical boron atom, the most negative boron atom according to calculated charge distributions²¹. Uncatalyzed hydrogen-deuterium exchange occurs at elevated temperatures, but it occurs in the terminal positions of all boron atoms and at sufficiently high temperatures is also observed for the bridges. A Lewis acid-base mechanism for the uncatalyzed exchange is ruled out since such an exchange would be specific to the apical boron

atom of the cage. In the reverse reaction, when deuterated B_5H_9 is reacted with toluene and *p*-xylene, deuterium substitution occurs only on the aromatic ring indicating that the reaction is specific to the aromatic system. A reversible hydroboration of the aromatic ring has been postulated as a likely mechanism that can explain these observations.

6. LINKED B₅ CAGES

Pentaborane cages can be linked directly or by another atom. An example of each is given here.

6.1. Linkage by σ*-Bonds*

In the first isolated example of the direct linking of two pentaborane(9) cages, the two-center σ-bond connected the two apical boron atoms giving $1,1'$ -(B₅H₈)₂ (ref.²²). This was prepared by an electric discharge in gaseous B_5H_9 . The other (B_5H_8) isomers were first discovered as low-volatility residues in commercially prepared pentaborane(9)²³. Rational syntheses of these compounds and some of their chemical properties were reported subsequently.

The 1,2'- $(B_5H_9)_2$ isomer was prepared by a Friedel–Crafts reaction using B_5H_9 and a 2-halo pentaborane(9). For example,

$$
2-BrB_5H_8 + B_5H_9 \longrightarrow 1,2'-(B_5H_9)_2
$$

and the 2,2' isomer was made by a nucleophilic displacement reaction 24 ,

 $KB_5H_8 + 2-BrB_5H_8 \longrightarrow 2,2'-(B_5H_9)_2$.

A number of reactions of the two isomers have been explored²⁵. The 2,2' isomer in benzene was found to rearrange partly to the 1,2′ isomer at 100 °C after several weeks in the presence of Ph₃As. Steric considerations most likely promote this, which would make isomerization to the 1,1′ appear particularly attractive. However, juxtaposition of 11B resonances prevented determining if any of the 1,1′ isomer was produced.

The boron–boron σ-bond in the 1,2' isomer can be cleaved by HBr at 65 °C, and this can be compared with the cleavage of the previously reported 1,1′ isomer by HI at room temperature. The presence of $AlBr₃$ is necessary to cleave the boron–boron σ -bond in the 1,2' isomer. The conversion of the 1,1' isomer to $B_{10}H_{14}$ in the presence of either HBr or AlBr₃ (ref.²²) is not observed for the 1,2' and 2,2' isomers.

6.2. Linkage by Sn Atoms

Two B_5H_9 cages can be linked by a SnPh₂ group using the reaction of K[B₅H₈] with SnCl₂Ph₂ in a 2 : 1 molar ratio at -35 °C in CH₂Cl₂ solvent²⁶. The immediate product is μ, μ' -SnPh₂(B₅H₈)₂. If this product is dissolved in CDCl₂ and stands for about a month at 25 °C , the isomer, μ -2'-SnPh₂(B₅H₈)₂ (Fig. 4), is detected in the ¹¹⁹Sn NMR spectrum. This isomer can also be prepared by reaction of $K[B_5H_8]$ and $SnCl_2Ph_2$ in diethyl ether. If the μ , μ' isomer, dissolved in CDCl₃, stands for about four months, the isomer μ -1'-SnPh₂(B₅H₈)₂ can be detected in the NMR spectrum. This isomer can also be prepared by reacting $K[B_5H_8]$ with 1-(SnClPh₂) B_5H_8 in CH_2Cl_2 at -35 °C. In the presence of a Lewis base, ready isomerization of μ, μ' -SnPh₂(B₅H₈)₂ to μ -2'-SnPh₂(B₅H₈)₂ would be consistent with the observation that µ-substituted pentaboranes isomerize to terminally substituted isomers in the presence of Lewis bases²⁷. The isolation of μ , μ [']-SnPh₂(B₅H₈)₂ in $CH₂Cl₂$ can be attributed to the low basicity of the solvent.

7. DERIVATIVES OF PENTABORANE(9)

Pentaborane(9) forms a wide range of derivatives, some of which are mentioned below. Most of the mono-substituted derivatives involve substitu-

FIG. 4

Structure of μ -2'-SnPh₂(B₅H₈)₂. Reprinted with permission from Fig. 1 in Fang H., Zhao D., Brammer L., Barton L.: *J. Chem. Soc., Chem. Commun*. **1994**, 1531.

tion of one of the three types of hydrogen atoms in the molecule, (1) the terminal hydrogen on B1, (2) a terminal hydrogen on one of the four equivalent basal boron atoms, B2-B5, and (3) one of the bridge hydrogen atoms between two basal boron atoms.

7.1. Stability of Derivatives

Experimental and *ab initio* calculational methods have been used to determine the relative stabilities of B_5H_9 derivatives²⁸. For some 28 derivatives, they yield the following results:

1) Me- and Cl- substituents are most stable in basal, terminal positions.

 $2)$ SiH₃- is more stable in the apical, terminal position.

3) Two basal substituents are most stable in adjacent, terminal positions.

4) If a Me- and a Cl- are both substituted onto a B_5 cage and one is in an apical position, then the more stable isomer has the Cl- at the apex.

Comparisons of experimental and calculated ¹¹B and ¹H chemical shifts were also included in this study.

7.2. Beryllium Derivatives

The reaction of KB_5H_8 with excess C_5H_5BeCl in a pentane slurry at -40 °C yields μ -[η⁵-(C₅H₅)Be]B₅H₈ (Fig. 5)²⁹. In this structure the Be atom occupies the position of a bridging hydrogen atom between two adjacent basal boron atoms. This is in contrast to the previously reported $2-[{\eta^5-(C_5H_5)}]-2-BeB_5H_{10}$ in which the Be atom assumes the position of a bo-

FIG. 5

Crystal structure of μ -[η⁵-(C₅H₅)Be]B₅H₈. Reprinted with permission from Fig. 1 in Gaines D. F., Coleson K. M., Calabrese J. C.: *Inorg. Chem*. **1981**, *44*, 84. Copyright 1981 American Chemical Society.

ron atom in the cage giving a structure that is very similar to the pentagonal pyramidal B_6H_{10} molecule³⁰. Broensted acids will substitute a proton for the bridging $Be(C_5H_5)$ group in μ -[η⁵-(C₅H₅)Be]B₅H₈ producing B₅H₉. Reaction of μ -[η⁵-(C₅H₅)Be]B₅H₈ with B₂H₆ results in the formation of B₁₀H₁₄ as well as other boron hydrides in a complex reaction sequence.

7.3. Boryl Derivatives

Compounds of the formula $1-(X_2B)B_5H_8$ (X = Cl, Br, F) have received considerable experimental and theoretical attention over the years. The preparation of 1- $(Cl_2B)B_5H_8$ (Fig. 6) by the Friedel–Crafts reaction of B_5H_9 with $BCl₃$ in the presence of an $AICI₃/PCI₃$ catalyst system was reported in 1982 (ref.³¹). Characterization was by ¹H and ¹¹B NMR spectroscopy and mass spectrometry. No reaction was observed in the absence of the specified catalysts. The compound reacts with diethyl ether at 50 °C to produce the complex 1- $\left[\text{Cl}_2\text{B}\cdot\text{OEt}_2\right]\text{B}_5\text{H}_8$, which decomposes at 70 °C to produce B_5H_9 .

Convenient preparations of 1-(Cl₂B)B₅H₈ and 1-(Br₂B)B₅H₈ with almost quantitative yields were reported in a later study³². In these reactions B_2Cl_4 or B_2Br_4 was reacted with B_5H_9 for 12 to 20 min at ambient temperature in a sealed tube. The 1-(Cl₂B)B₅H₈ was reacted with (CF_3) ₂Hg, MeOH and *t*-BuLi to yield $1-(BF_2)B_3H_8$, $1-(CIBOMe)B_5H_8$, and $1-t-BuBCI)B_5H_8$ and 1-*t*-Bu₂B)B₅H₈. Reduction with LiBH₄ yielded a mixture of unidentified boron hydrides.

Extensive gas phase electron diffraction and theoretical calculations have been performed on 1- $(BCl_2)B_5H_8$ and 1- $(BF_2)B_5H_8$ (refs^{33,34}). Besides confirming the structure proposed previously from spectroscopic evidence and providing precise structural parameters, it was shown that the $BF₂$ unit is free to rotate about the B–B σ-bond.

FIG. 6

Structure of $1-(Cl_2B)B_5H_8$. Reprinted with permission from Fig. 1 (lower) in Gaines D. F., Heppert J. A., Coons D. F., Jorgenson M. W.: *Inorg. Chem*. **1981**, *21*, 3663. Copyright 1981 American Chemical Society.

Reaction of the $B_5H_8^-$ anion with *B*-chloro-9-borabicyclo[3.3.1]nonane (B -Cl-9-BBN) yields the bridge-substituted *nido*-pentaborane, (μ -9-BBN) B_5H_8 (Fig. $7)^{35}$, which has a boron atom in a bridging position. In solution, the 9-BBN fragment rotates relative to the pentaborane framework. In diethyl ether solution, the compound slowly converts to a *nido*-hexaborane cluster, $4,5$ -(cyclooctane-1,5-diyl) B_6H_8 (Fig. 8), in which the bridging boron atom is incorporated into the boron cluster. The bicyclic hydrocarbon group is bonded to two adjacent basal boron atoms.

7.4. Alkyl and Aryl Derivatives

It was shown in the 1960s that reaction of olefins with B_5H_9 yielded 2-substituted alkyl derivatives³⁶, and Friedel–Crafts catalyzed attack of B_5H_9 by alkenes and alkyl halides led to 1-substituted derivatives³⁷. Aryl pentabo-

FIG. 7

Structure of the bridge-substituted $nido$ -pentaborane, $(\mu - 9 - BBN)B_5H_8$. Reprinted with permission from Fig. 1 in Edvenson G. M., Gaines D. F., Harris H. A., Campana C. F.: *Organometallics* **1990**, *9*, 401. Copyright 1990 American Chemical Society.

B1

 $B4 \bigvee B3$

B5

B2

B6

 $C₁$

C8

 $\cap F$

C7 \mathcal{N} C4

C6

FIG. 8

Structure of the bicylic B_6H_{10} derivative, $4,5$ -(cyclooctane-1,5-diyl) B_6H_8 . Reprinted with permission from Fig. 2 in Edvenson G. M., Gaines D. F., Harris H. A., Campana C. F.: *Organometallics* **1990**, *9*, 401. Copyright 1990 American Chemical Society.

rane derivatives were apparently unobtainable by the latter route because of the low Friedel–Crafts reactivity of the aryl halides.

In 1982 2-substituted aryl pentaboranes were synthesized by the reaction of 2-ClB₅H₈ with a number of aromatic hydrocarbons³⁸. Success was obtained with benzene, toluene and *m*-xylene but not with mesitylene, presumably, because of steric constraints imposed by the two α -methyl groups. Attempts to prepare 1-substituted arylpentaboranes by isomerization of the 2-substituted compounds were unsuccessful.

The extremely strong nucleophile lithium triethylhydridoborate, $LiEt₃BH$, alkylates pentaborane(9) in a spectacular fashion yielding the trialkyl compound, 2,3,4-Et₃B₅H₆ (ref.³⁹). A B₆, *hypho* intermediate has been proposed for this unusual reaction.

Aluminum chloride is the most used catalyst for alkylating B_5H_9 and other boron hydrides. However, the use of this catalyst results not only in relatively low yields but has also been long known to yield a number of side-products. A range of metal chlorides has been examined for optimizing the Friedel–Crafts alkylation of B_5H_9 (ref.⁴⁰). The borane and isopropyl chloride were reacted in a 1 : 1 ratio with 10 mole % of catalyst. Products observed included the expected 1-iPrB₅H₈ as well as 1-PrB₅H₈, 2-iPrB₅H₈, 1-EtB₅H₈ and unreacted B₅H₉. Catalysts tested included AlCl₃, FeCl₂, NbCl₅, TaCl₅, ZrCl₄ and HfCl₄. Aluminum chloride gave the lowest yield of 1-iPrB₅H₈ (12.2%), the highest yield of 1-PrB₅H₈ (16.8%) and 4.3% of 2-iPrB₅H₈. Yields of between 40 and 60% were observed for FeCl₂, NbCl₅ and TaCl₅ with 5% or less of 1-PrB₅H₈ and only traces of 2-iPrB₅H₈. A yield of 80.9% was achieved with HfCl₄, but the side-products, 1-PrB₅H₈ and 2-iPr B_5H_8 , were produced in yields of 11.5 and 7.7%, respectively. The most effective catalyst was $ZrCl_4$ with a yield of the desired 1-iPrB₅H₈ of 89.5% and only 2.3% of 1-PrB₅H₈ as the only significant side-product. In these studies, raising the proportion of catalyst raised yields only marginally, and using an excess of isopropyl chloride lowered selectivity. In general, lower temperatures resulted in higher selectivity and lower yields.

7.5. Tin Derivatives

There are three possible isomers of (triphenylstannyl)-*nido*-pentaborane(9). Two of these have been prepared by the reaction of $K[B_5H_8]$ and $SnClPh_3$ (refs^{41,42}). The isomer 1-(Ph₃Sn)B₅H₈ is produced if the reaction is run in tetrahydrofuran whereas $2,3-\mu$ -(Ph₃Sn)B₅H₈ is the product if the reaction is run in CH₂Cl₂. Attempts to prepare the 2-(Ph₃Sn)B₅H₈ isomer using the reaction of $K[B_5H_8]$ and $SnClPh_3$ were made under a variety of conditions, but one or both of the other two isomers were always observed as impurities. Contrary to other derivatives of B_5H_9 , thermal isomerization of $2,3-\mu$ -(Ph₃Sn)B₅H₈ to a terminally substituted derivative is not observed. The compound 1-(ClPh₂Sn)B₅H₈ was prepared in a reaction analogous to the preparation of 1- $(Ph_3Sn)B_5H_8$.

Characterization of these compounds was made by mass spectrometry, X-ray crystallography and ¹H, ¹¹B and ¹¹⁹Sn NMR. Coupling with ¹¹B and ¹⁰B was observed in the ¹¹⁹Sn NMR spectra of two of the 1-substituted compounds. The observed $J(^{119}Sn^{-11}B)$ values were 1 117 Hz for 1- $(Ph_3Sn)B_5H_8$ and 1 272 Hz for 1-(ClPh₂Sn)B₅H₈, both somewhat higher than previously observed coupling constants for these nuclei.

7.6. Nitrogen Derivatives

Derivatives of pentaborane(9) in which a bridging hydrogen atom has been replaced by a C–N two-atom bridge have been prepared by reacting lithium or potassium salts of $B_5H_8^-$ with the iminium salt, [Me₂NCH₂]I (see Fig. 2)⁴³:

$$
[Me_2NCH_2]I + MB_5H_8 \longrightarrow \mu-Me_2NCH_2B_5H_8 + MI.
$$

Structure determination was made by $11B$ NMR. The nitrogen atom delivers two electrons to the borane cage rendering the new compound a derivative of B_5H_{11} and an *arachno* species according to electron counting procedures⁴⁴. There is no evidence of direct bonding between the boron atoms connected by the C–N bridge. Reaction of the iminium salt with 1-substituted pentaborane(9) compounds $(C_2H_5$ - and Br-) gave the analogous two-atom bridged products.

Terminal substitution of B_5H_9 by a nitrogen atom has been achieved by reacting $X-B_5H_8$ (X = Cl or Br) with secondary or tertiary amines. For example, hexamethyldisilazane reacts with $2-BrB₅H₈$ in CH₂Cl₂ solution at –78 °C to produce 2-(bis(trimethylsilyl)amino)pentaborane(9), 2-[(Me₃Si)₂N]B₅H₈ $(ref.45)$.

 $2-\text{BrB}_5H_8 + (Me_3Si)_2NH \longrightarrow [(Me_3Si)_2N]B_5H_8 + HBr$

Several side-products are reported in this reaction including a μ -aminodiborane⁴⁶, B₅H₉, an amine derivative of B₃H₇ (ref.⁴⁷), and two or more borazines. Analogous 2-aminopentaboranes were produced by reacting 2 -BrB₅H₈ with (Me₂SiH)₂NH, (iBuMe₂Si)₂NH and (Me₃Si)₂NMe (ref.⁴⁸).

Reaction of 2-BrB₅H₈ with *t*-Bu(Me₃Si)NH in the presence of excess B_5H_9
CH₂Cl₂ solution yields the expected 2-aminopentaborane, in CH2Cl2 solution yields the expected 2-aminopentaborane, $2-[t-Bu(Me_3Si)N]B_5H_8$, as well as *hypho*-2,3- μ -(t -BuNH) B_5H_{10} (Fig. 9), which is unusually stable to H₂O and MeOH. In this *hypho* compound the nitrogen atom is occupying a position in the cage rather than the position of a bridging hydrogen atom as in μ -Me₂NCH₂B₅H₈.

7.7. Phosphorus Derivatives

Pentaborane(9) derivatives in which a phosphorus atom occupies a position equivalent to a bridging hydrogen atom can result in two geometric isomers if the phosphorus atom is bonded to two different groups in addition to the B_5 cage⁴⁹ (Fig. 10). For example, reaction of $(Me_3Si)_2CHPCl_2$ with the

FIG. 9

Crystal structure *hypho-2,3-µ-(t-BuNH)B₅H₁₀. Reprinted with permission from figure in* McGaff R. W., Gaines D. F., Powell D. R.: *Inorg. Chem*. **1993**, *32*, 2612. Copyright 1993 American Chemical Society.

FIG. 10

Proposed structure of (μ -phosphino)pentaborane(9) derivatives. Geometric isomers can occur if $R(1)$ and $R(2)$ are not the same. Reprinted with permission from Fig. 1 in Coons D. E., Gaines D. F.: *Inorg. Chem*. **1987**, *26*, 1885. Copyright 1987 American Chemical Society.

 B_5H_8 ion produces two isomers of $[\mu$ -(Me₃Si)₂CHPCl|B₅H₈. Reaction of either of these isomers with 2,6-lutidine results in a dehydrohalogenation yielding $(Me_3Si)_2CPB_5H_8$ (Fig. 11)⁵⁰. In these compounds the phosphorus atom has taken the position of a boron atom in the cluster, which now has the geometry of B_6H_{10} . The same compound, $(Me_3Si)_2CPB_5H_8$, was also produced by the direct reaction of $(Me_3Si)_2C=PCl$ and KB_5H_8 in diethyl ether,

$$
(\text{Me}_3\text{Si})_2\text{C=PCl} + \text{KB}_5\text{H}_8 \longrightarrow (\text{Me}_3\text{Si})_2\text{CPB}_5\text{H}_8 + \text{KCl} .
$$

Another reaction that produces phosphorus-bridged derivatives of B_5H_9 involves the high-yield reaction of $(Me_3Si)P=C(OSiMe_3)t$ -Bu with neutral B_5H_9 . The product is μ -[t-Bu(Me₃SiO)CHP(SiMe₃)] B_5H_8 (ref.⁵¹). Mechanisms for this reaction are explored with the help of MNDO semiempirical theoretical calculations. This compound is relatively stable thermally and in air although the (SiMe₃) group is replaced by H or D in reactions with H_2O or $D_2O.$

Reaction of NaB_5H_8 with Ph₂PCl yields the phosphorus-bridged compound $(\mu$ -Ph₂P)B₅H₈ (ref.⁵²). MNDO calculations for this compound suggest that the interaction between the phosphorus atom and the boron cage is best described by two two-electron, two-center bonds. There is some evidence that the lone electron pair on the phosphorus atom is involved in cage bonding. Reaction of $(\mu-Ph_2P)B_5H_8$ with NaH results in bridgedeprotonation and yields the corresponding anion, $(\mu$ -Ph₂P)B₅H₇. This anion reacts with $Fe(\eta^5-C_5H_5)(CO)_2$ I to produce an iron complex described below.

Yet another phosphorus-bridged B_5 compound, μ - $(t$ -Bu)(Me₃SiO)-C=P(SiMe₃) results from the reaction of *t*-Bu(Me₃SiO)CHPSiMe₃ with B_5H_9 $(ref.53)$.

FIG. 11

Proposed structure of compounds of the type R_2 CPB₅H₈, for example, $(Me_3Si)_2CPB_5H_8$. Reprinted with permission from Fig. 3 in Coons D. E., Gaines D. F.: *Inorg. Chem*. **1987**, *26*, 1885. Copyright 1987 American Chemical Society.

When 1-trimethylphosphine-pentaborane(9)⁵⁴ is reacted with KH or NaH, the result is a transfer of hydride ion to the pentaborane yielding the anion, $\rm B_5H_{10}$ ·P(Me) $_3^-$ (ref. 55). The 11 B NMR spectrum of this ion is consistent with fluxional behavior (Fig. 12). Reaction of the anion with $BCI₃$ abstracts the hydride and regenerates the original monophosphine derivative of pentaborane(9).

7.8. Transition Metal Derivatives

Investigation of transition metal complexes involving B_5H_9 has followed many paths. Metal carbonyl derivatives of pentaborane(9) include 2-[Co(CO)₄]B₅H₈ and 2-[(η^5 -C₅H₅)Fe(CO)₂]B₅H₈ (ref.⁵⁶). The former is prepared either by the photolysis of $Co_2(CO)_8$ in liquid B_5H_9 or the reaction of $NaCo(CO)₄$ and 2-ClB₅H₈. The iron complex (Fig. 13) is prepared by the reaction of $(\eta^5$ -C₅H₅)Fe(CO)₂ with LiB₅H₈.

The synthesis of 2,2,2-tricarbonyl-2-manganahexaborane, $2,2,2-(CO)_{3}$ -2- $MnB₅H₁₀$ (Fig. 14) from $B₅H₉$, $Mn₂(CO)₁₀$ and $H₂$ (ref.⁵⁷) has been improved by employing a heterogeneous catalyst, ruthenium on a carbon support⁵⁸. This method is also effective for preparation of the analogous rhenium

FIG. 12

Fluxional behavior in $\mathtt{B_5H_{10}.P(Me)_3}$ ion: coupled and $^1\mathrm{H}$ decoupled $^{11}\mathrm{B}$ NMR spectra and proposed valence bond and geometrical structures. Reprinted with permission from Fig. 1 of Grundt P., Kodama G.: *Inorg. Chem*. **1994**, *33*, 2056. Copyright 1994 American Chemical Society.

complex. A further, refined preparation of these B_6 derivatives from B_5H_9 has been described⁵⁹.

A $(\mu-H)_{3}(CO)_{9}Os_{3}(\mu-C)$ group can be substituted onto the apical boron atom of B_5H_9 by the following reaction⁶⁰,

$$
[(\mu - H)_{3}(CO)_{9} Os_{3}(\mu - C)]_{3}(O_{3}B_{3}O_{3}) + B_{5}H_{9} \xrightarrow{BF_{3}} (\mu - H)_{3}(CO)_{9} Os_{3}(\mu - C)(B_{5}H_{8}).
$$

The presence of BF_3 is necessary to promote formation of this product (Fig. 15).

The phosphorus-bridged B_5 anion, (µ-Ph₂P)B₅H₇ reacts with Fe(η^5 -C₅H₅)-(CO)₂I to produce the complex $(\mu$ -Ph₂P)B₅H₇Fe(η ⁵-C₅H₅)(CO)₂ (Fig. 16)⁵³. Note that phosphorus atom maintains its bridge position between B_2 and

Proposed structure and ¹¹B NMR spectrum of $(\mu-H)_{3}(CO)_{9}Os_{3}(\mu-C)(B_{5}H_{8})$. Reprinted with permission from Fig. 2 of Wermer J. R., Jan D-Y., Getman T. D., Moher E., Shore S. G.: *Inorg. Chem*. **1988**, *27*, 4274. Copyright 1988 American Chemical Society.

FIG. 16

Crystal structure of $(\mu$ -Ph₂P)B₅H₇Fe(η ⁵-C₅H₅)(CO)₂. Reprinted with permission from Fig. 3 of Goodreau B. H., Ostrander R. L., Spencer J. T.: *Inorg. Chem*. **1991**, *30*, 2066. Copyright 1991 American Chemical Society.

 B_3 , and the Fe(η^5 -C₅H₅)(CO)₂ group is substituted for a terminal hydrogen atom on B₄.

8. CONCLUSIONS

The chemistry of pentaborane(9) continues to be a rewarding area of research. A steady stream of interesting new derivatives of this compound with widely varying properties continues to appear. Although not successful as a jet fuel as was formerly hoped, it has become one of the pillars of boron hydride chemistry research.

REFERENCES

- 1. Stock A., Kuss E.: *Ber. Dtsch. Chem. Ges*. **1923**, *56*, 789.
- 2. Dulmage W. J., Lipscomb W. N.: *Acta Crystallogr*. **1952**, *5*, 260.
- 3. Martin D. T. in: *Borax to Boranes, Advances in Chemistry Series* (R. F. Gould, Ed.). American Chemical Society, Washington, D.C. 1961.
- 4. Gaines D. F.: *Acc. Chem. Res*. **1973**, *6*, 416.
- 5. Gaines D. F. in: *Boron Chemistry 4* (R. W. Parry and G. Kodama, Eds), p. 73. Pergamon Press, New York 1981.
- 6. Beall H., Gaines D. F.: *Inorg. Chim. Acta*, in press.
- 7. Heppert L. A., Gaines D. F.: *Inorg. Chem*. **1983**, *22*, 3155.
- 8. Gaines D. F. in: *Boron Chemistry* (S. Heřmánek, Ed.), p. 118. World Scientific, Singapore 1987.
- 9. Gaines D. F., Coons D. E., Heppert J. A. in: *Boron Hydrides* (R. E. Williams, A. Greenberg and J. F. Leibman, Eds), p. 91. VCH Publishers, Deerfield Branch (FL) 1988.
- 10. Grimes R. N. (Ed.): *Metal Interactions with Boron Clusters*. Plenum Press, New York 1982.
- 11. Gaines D. F., Edverson G. M., Hill T. G., Adams B. R.: *Inorg. Chem*. **1987**, *26*, 1813.
- 12. Goodreau B. H., Spencer J. T.: *Inorg. Chem*. **1992**, *31*, 2612.
- 13. Cendrowski-Guillaume S. M., Spencer J. T.: *Main Group Met. Chem*. **1997**, *20*, 733.
- 14. Schlesinger H. I.: *University of Chicago Final Report*. Rept. P-2964. Naval Research Laboratory, Chicago 1946.
- 15. Edwards L. H., Hough W. V., Ford M. D.: *Proc. Int. Congr. Pure Appl. Chem*. **1958**, *16*, 475.
- 16. Ishii M., Kodama G.: *Inorg. Chem*. **1990**, *29*, 817.
- 17. Gaines D. F., Kunz J. C., Kulzick M. J.: *Inorg. Chem*. **1985**, *24*, 3336.
- 18. Cendrowski-Guillaume S., Spencer J. T.: *Organometallics* **1992**, *11*, 969.
- 19. Gaines D. F., Iorns T. V.: *J. Am. Chem. Soc*. **1967**, *89*, 3375.
- 20. Gaines D. F., Heppert J. A., Kunz J. C.: *Inorg. Chem*. **1985**, *24*, 621.
- 21. Lipscomb W. N.: *Boron Hydrides*, p. 110. Benjamin, New York 1963.
- 22. Grimes R. N., Wang F. E., Lewin R., Lipscomb W. N.: *Proc. Natl. Acad. Sci. U.S.A.* **1961**, *47*, 996.
- 23. Gaines D. F., Iorns T. V., Clevenger E. N.: *Inorg. Chem*. **1971**, *10*, 1096.
- 24. Gaines D. F., Jorgenson M. W., Kulzick M. A.: *J. Chem. Soc., Chem. Commun*. **1979**, 380.
- 25. Heppert J. A., Kulzick M. A., Gaines D. F.: *Inorg. Chem*. **1984**, *23*, 14.
- 26. Fang H., Zhao D., Brammer L., Barton L.: *J. Chem. Soc., Chem. Commun*. **1994**, 1531.
- 27. Gaines D. F., Iorns T. V.: *Inorg. Chem*. **1971**, *10*, 1094.
- 28. Onak T., Diaz M., Tseng J., Herrera S., Correa M.: *Main Group Met. Chem*. **1993**, *16*, 271.
- 29. Gaines D. F., Coleson K. M., Calabrese J. C.: *Inorg. Chem*. **1981**, *20*, 84.
- 30. Gaines D. F., Walsh J. L.: *Inorg. Chem*. **1978**, *17*, 1238.
- 31. Gaines D. F., Heppert J. A., Coons D. F., Jorgenson M. W.: *Inorg. Chem*. **1982**, *21*, 3663.
- 32. Saulys D. A., Morrison J. A.: *Inorg. Chem*. **1990**, *29*, 4174.
- 33. Brain P. T., Rankin D. W. H., Robertson H. E., Alberts I. L., Downs A. J., Greene T. M., Hofmann M., Schleyer P. R.: *J. Chem. Soc., Dalton Trans*. **1995**, 2193.
- 34. Brain P. T., Rankin D. W. H., Robertson H. E., Alberts I. L., Hofmann M., Schleyer P. R.: *Inorg. Chem*. **1994**, *33*, 2565.
- 35. Edvenson G. M., Gaines D. F., Harris H. A., Campana C. F.: *Organometallics* **1990**, *9*, 401.
- 36. Ryschkewitsch G. E., Mezey E. J., Altwicker E. L., Sisler H. H., Garrett A. B.: *Inorg. Chem*. **1963**, *2*, 893.
- 37. Ryschkewitsch G. E., Harris S. W., Mezey E. J., Sisler H. H., Weilmunster E. A., Garrett A. B.: *Inorg. Chem*. **1963**, *2*, 890.
- 38. Heppert J. H., Gaines D. F.: *Inorg. Chem*. **1982**, *21*, 4117.
- 39. Gaines D. F., Steehler G. A.: *J. Chem. Soc., Chem. Commun*. **1984**, 1127.
- 40. Lee L. K., Gaines D. F.: *Organometallics* **1990**, *9*, 1748.
- 41. Barton L., Srivastava D. K.: *J. Chem. Soc., Dalton Trans*. **1992**, 1327.
- 42. Srivastava D. K., Rath N. P., Barton L.: *Organometallics* **1992**, *11*, 2263.
- 43. Gaines D. F., Coons D. E.: *Inorg. Chem*. **1986**, *25*, 364.
- 44. a) Wade K.: *J. Chem. Soc., Chem. Commun*. **1971**, *18*, 792; b) Wade K.: *Adv. Inorg. Chem. Radiochem.* **1976**, *18*, 1; c) Rudolph R. W.: *Acc. Chem. Res*. **1976**, *9*, 446.
- 45. McGaff R. W., Gaines D. F., Powell D. R.: *Inorg. Chem*. **1993**, *32*, 2612.
- 46. Gaines D. F., Schaeffer R.: *J. Am. Chem. Soc*. **1964**, *86*, 1505.
- 47. Kodama G.: *Inorg. Chem*. **1975**, *14*, 452.
- 48. McGaff R. W., Gaines D. F.: *Inorg. Chem*. **1996**, *35*, 7850.
- 49. a) Burg A. B., Heinen H.: *Inorg. Chem*. **1968**, *7*, 1021; b) Mishra I. B., Burg A. B.: *Inorg. Chem*. **1973**, *12*, 664.
- 50. Coons D. E., Gaines D. F.: *Inorg. Chem*. **1987**, *26*, 1885.
- 51. Miller R. W., Donaghy K. J., Spencer J. T.: *Organometallics* **1991**, *10*, 1161.
- 52. Goodreau B. H., Ostrander R. L., Spencer J. T.: *Inorg. Chem.* **1991**, *30*, 2066.
- 53. Miller R. W., Donaghy K. J., Spencer J. T.: *Phosphorus, Sulfur Silicon* **1991**, *57*, 289.
- 54. Long J. R.: *Ph.D. Thesis.* The Ohio State University, Columbus (OH) 1973.
- 55. Grundt P., Kodama G.: *Inorg. Chem*. **1994**, *33*, 2056.
- 56. Fischer M. F., Gaines D. F., Ulman J. A.: *J. Organomet. Chem*. **1982**, *231*, 55.
- 57. Fischer M. B., Gaines D. F.: *Inorg. Chem*. **1979**, *18*, 3200.
- 58. Coons D. E., Gaines D. F.: *Inorg. Chem*. **1985**, *24*, 3774.
- 59. Gaines D. F., Coons D. E., Fischer M. B.: *Organomet. Synth*. **1989**, *4*, 125.
- 60. Wermer J. R., Jan D-Y., Getman T. D., Moher E., Shore S. G.: *Inorg. Chem.* **1988**, *27*, 4274.